Abstract

This work faces the redundancy problem, a central concern in robotics, in a particular force-producing task by using muscle synergies to simplify the control. We extracted muscle synergies from human electromyograph signals and interpreted the physical meaning of the identified muscle synergies. Based on the human analysis results, we hypothesized a novel control framework that can explain the mechanism of the human motor control. The framework was tested in controlling a pneumatic-driven robotic arm to perform a reaching task. This control method, which uses only two synergies as manipulated variables for driving antagonistic pneumatic artificial muscles to generate desired movements, would be useful to deal with the redundancy problem; thus, suggesting a simple but efficient control for human-like robots to work safely and compliantly with humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.