Abstract

A green, simple, non-toxic, and sensitive sample pretreatment procedure coupled with high-performance liquid chromatography (HPLC) was developed for the analysis of chloramphenicol (CAP) that exploits an aqueous two-phase system based on imidazolium ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [Bmim]BF(4)) and organic salt (Na(3)C(6)H(5)O(7)) using a liquid-liquid extraction technique. The influence factors on partition behaviors of CAP were studied, including the type and amount of salts, the pH value, the volume of [Bmim]BF(4), and the extraction temperature. Extraction efficiency of the CAP was found to increase with increasing temperature and the volume of [Bmim]BF(4). Thermodynamic studies indicated that hydrophobic interactions were the main driving force, although electrostatic interactions and salting-out effects were also important for the transfer of the CAP. Under the optimal conditions, 90.1% of the CAP could be extracted into the ionic liquid-rich phase in a single-step extraction. This method was practical when applied to the analysis of CAP in feed water, milk, and honey samples with a linear range of 2~1,000 ng mL(-1). The method yielded a limit of detection of 0.3 ng mL(-1) and a limit of quantification of 1.0 ng mL(-1). The recovery of CAP was 90.4-102.7% from aqueous samples of real feed water, milk, and honey samples by the proposed method. This novel process is much simpler and more environmentally friendly and is suggested to have important applications for the separation of antibiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.