Abstract

Abstract Multi-beam sonar is potentially a powerful analytical tool for investigating the acoustic properties and behaviour of fish in relation to quantitative fisheries research. The SIMRAD SM2000 is a 200 kHz multi-beam sonar employing an 80-element array to transmit and synthesize, electronically, 128 receive beams (20°×2.2°) over a 180° arc simultaneously. Once calibrated, such systems enable the extraction of acoustic target strength and volume backscattering from an extended 3D ocean volume. We present an overview of the theoretical framework for the calibration of a multi-beam sonar, and then compare the acoustic backscatter from a calibrated single-beam 50 kHz echosounder with selected beams from a sphere-calibrated multi-beam sonar. Both systems recorded acoustic data from Atlantic herring contained within a weir, as the fish passed beneath the transducers. Specifically, we examine the relationship between the area-backscattering strength (Sa) from the single-beam system with the nadir beam (beam 63) of the SM2000 sonar. In addition, data are presented on the observed variability in Sa with target aspect for off-vertical angles from 15° to 60° in 15° intervals. Non-standard synthesized SM2000 beam widths are explored for both calibration and field datasets. The implications for biomass estimation are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call