Abstract

The present article describes extraction of chitosan from prawn shells waste and its application in thermal stabilization of Fusarium sp. ICT SAC1 cutinase by non-covalent and covalent conjugation. Extracted chitosan represented 78.40% degree of deacetylation (DDA), a molecular weight of 173 kDa and was soluble in 1% acetic acid with 2.8 ± 0.15% insoluble matter. The structural (FTIR, NMR and XRD) and thermal characterization (DSC and TGA) indicated unique properties for chitosan. Plausible chitosan structure was also deduced. The water and fat binding capacities were 923% and 598.05% while 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 1,1-diphenyl-2-picrylhydrzyl radicals scavenging activity was 60.62 and 11.83 μM Trolox-Equivalent/ml. The Km and Vmax values of free cutinase were 0.82 mM and 20.64 mM/min which increased by 14.63 and 17.07%; and 27.18 and 43.94% after non-covalent and covalent conjugation, respectively. A marginal increment in thermal inactivation constants and energy (kd, t1/2, D and Ed value) were also noticed for cutinase-chitosan conjugates. The enthalpy, free energy and entropy values increased marginally in covalent conjugate vis-à-vis non-covalent conjugated and free cutinase. A reduction in α-helix, random coils and β-sheets content was noted after conjugation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.