Abstract

The idea of ‘citizen as sensors’ has gradually become a reality over the past decade. Today, Volunteered Geographic Information (VGI) from citizens is highly involved in acquiring information on natural disasters. In particular, the rapid development of deep learning techniques in computer vision and natural language processing in recent years has allowed more information related to natural disasters to be extracted from social media, such as the severity of building damage and flood water levels. Meanwhile, many recent studies have integrated information extracted from social media with that from other sources, such as remote sensing and sensor networks, to provide comprehensive and detailed information on natural disasters. Therefore, it is of great significance to review the existing work, given the rapid development of this field. In this review, we summarized eight common tasks and their solutions in social media content analysis for natural disasters. We also grouped and analyzed studies that make further use of this extracted information, either standalone or in combination with other sources. Based on the review, we identified and discussed challenges and opportunities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.