Abstract
In the field of bioimpedance measurements, the Cole impedance model is widely used for characterizing biological tissues and biochemical materials. In this work, a nonlinear least squares fitting is applied to extract the double-dispersion Cole impedance parameters from simulated magnitude response datasets without requiring the direct impedance data or phase information. The technique is applied to extract the impedance parameters from MATLAB simulated noisy magnitude datasets showing less than 1.2% relative error when 60dB SNR Gaussian white noise is present. This extraction is verified experimentally using apples as the Cole impedances showing less than 3% relative error between simulated responses (using the extracted impedance parameters) and the experimental results over the entire dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical & Biological Engineering & Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.