Abstract
The accuracy of target spectra determines the performances of hyperspectral target detection (TD) algorithms. However, given the inherent spectral variability and subpixel problem in hyperspectral imagery (HSI), the target spectra obtained from a standard spectral library or pixels from images directly are in most cases different from those of the real target spectra, resulting in low detection accuracy. The problem caused by inaccurate prior target information led to recognition of a new hotspot on HSI. In this paper, an adaptive weighted learning method (AWLM) using a self-completed background dictionary (SCBD) is specifically developed to extract the accurate target spectrum for hyperspectral TD. AWLM is derived from the idea of dictionary learning algorithms, learning the specific target spectrum with target-proportion-related adaptive weights. A strategy to construct SCBD is proposed to guarantee the convergence of AWLM to the accurate target spectrum. Utilizing the extracted target spectrum with higher accuracy, conventional TD algorithms can also achieve satisfactory detection results. Experimental results on both simulated and real hyperspectral data demonstrate that the proposed method has an advantage in extracting accurate target spectrum, enabling better and more robust detection results using conventional detectors than state-of-the-art methods that also aim at the problem of inaccurate prior target information of HSI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.