Abstract

Geophysical monitoring of subsurface reservoirs relies on detecting small changes in the seismic response between a baseline and monitor study. However, internal multiples, related to the over- and underburden, can obstruct the view of the target response, hence complicating the time-lapse analysis. To retrieve a response that is free from the over- and underburden effects, the data-driven Marchenko method is used. This method effectively isolates the target response, which can then be used to extract more precise time-lapse changes. In addition, the method also reveals target-related multiples that probe the reservoir more than once, which further defines the changes in the reservoir. To verify the effectiveness of the method, a numerical example is constructed. This test finds that, when using the isolated target response, the observed time differences resemble the expected time differences in the reservoir. Moreover, the results obtained with target-related multiples also benefit from the Marchenko-based isolation of the reservoir. It is, therefore, concluded that this method has the potential to observe dynamic changes in the subsurface with increased accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.