Abstract
In a previous article, we presented a systematic computational study of the extraction of semantic representations from the word-word co-occurrence statistics of large text corpora. The conclusion was that semantic vectors of pointwise mutual information values from very small co-occurrence windows, together with a cosine distance measure, consistently resulted in the best representations across a range of psychologically relevant semantic tasks. This article extends that study by investigating the use of three further factors--namely, the application of stop-lists, word stemming, and dimensionality reduction using singular value decomposition (SVD)--that have been used to provide improved performance elsewhere. It also introduces an additional semantic task and explores the advantages of using a much larger corpus. This leads to the discovery and analysis of improved SVD-based methods for generating semantic representations (that provide new state-of-the-art performance on a standard TOEFL task) and the identification and discussion of problems and misleading results that can arise without a full systematic study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.