Abstract

An algorithm for extracting rules from a standard three-layer feedforward neural network is proposed. The trained network is first pruned not only to remove redundant connections in the network but, more important, to detect the relevant inputs. The algorithm generates rules from the pruned network by considering only a small number of activation values at the hidden units. If the number of inputs connected to a hidden unit is sufficiently small, then rules that describe how each of its activation values is obtained can be readily generated. Otherwise the hidden unit will be split and treated as output units, with each output unit corresponding to an activation value. A hidden layer is inserted and a new subnetwork is formed, trained, and pruned. This process is repeated until every hidden unit in the network has a relatively small number of input units connected to it. Examples on how the proposed algorithm works are shown using real-world data arising from molecular biology and signal processing. Our results show that for these complex problems, the algorithm can extract reasonably compact rule sets that have high predictive accuracy rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.