Abstract
Extracting a subset of representative users from the original set in social networks plays a critical role in Social Network Analysis. In existing studies, some researchers focus on preserving users’ characteristics when sampling representative users, while others pay attention to preserving the topology structure. However, both users’ characteristics and the network topology contain abundant information of users. Thus, it is critical to preserve both of them while extracting the representative user subset. To achieve the goal, we propose a novel approach in this study, and formulate the problem as RUS (Representative User Subset) problem that is proved to be NP-Hard. To solve RUS problem, we propose a method KS (K-Selected) that is consisted of a clustering algorithm and a sampling model, where a greedy heuristic algorithm is proposed to solve the sampling model. To validate the performance of the proposed approach, extensive experiments are conducted on two real-world datasets. Results demonstrate that our method outperforms state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.