Abstract

AbstractThe recent reports on giant piezoresistance effect in highly resistive silicon nanowires (SiNWs) have offer greater sensitivity in stress measurements. Despite enhanced sensitivity, the piezoresistance of highly conductive silicon are preferred as they are less prone to thermal noises and hence better accuracy. Here we report a thermal induced buckle micro-bridge technique to accurately characterize the temperature dependent piezoresistivity effect in SiNWs. Phosphorus doped <110> SiNWs with 50 nm width, 95 nm thickness and 100 μm length were encapsulated within SiO2 micro-bridges. The electrical measurement of both reference SiNWs and SiNWs at micro-bridges was carried out, followed by the optical profiling of the micro-bridges with embedded SiNWs. N-type SiNWs with doping of 1×1020 ion/cm3 exhibit a strong dependence on temperature with a piezoresistive coefficient that decreases by 22.5 % between 25 oC to 60 oC; whereas its bulk counterpart is independent of temperature across this range. The results demonstrated that thermal noises may be more detrimental to nano-scale electromechanical sensors than its bulk counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.