Abstract

Today, the relational database is not suitable for data management due to the large variety and volume of data which are mostly untrusted. Therefore, NoSQL has attracted the attention of companies. Despite it being a proper choice for managing a variety of large volume data, there is a big challenge and difficulty in performing online analytical processing (OLAP) on NoSQL since it is schema-less. This article aims to introduce a model to overcome null value in converting document-oriented NoSQL databases into relational databases using parallel similarity techniques. The proposed model includes four phases, shingling, chunck, minhashing, and locality-sensitive hashing MapReduce (LSHMR). Each phase performs a proper process on input NoSQL databases. The main idea of LSHMR is based on the nature of both locality-sensitive hashing (LSH) and MapReduce (MR). In this article, the LSH similarity search technique is used on the MR framework to extract OLAP cubes. LSH is used to decrease the number of comparisons. Furthermore, MR enables efficient distributed and parallel computing. The proposed model is an efficient and suitable approach for extracting OLAP cubes from an NoSQL database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.