Abstract
Much time in process mining projects is spent on finding and understanding data sources and extracting the event data needed. As a result, only a fraction of time is spent actually applying techniques to discover, control and predict the business process. Moreover, current process mining techniques assume a single case notion. However, in real-life processes often different case notions are intertwined. For example, events of the same order handling process may refer to customers, orders, order lines, deliveries, and payments. Therefore, we propose to use Multiple Viewpoint (MVP) models that relate events through objects and that relate activities through classes. The required event data are much closer to existing relational databases. MVP models provide a holistic view on the process, but also allow for the extraction of classical event logs using different viewpoints. This way existing process mining techniques can be used for each viewpoint without the need for new data extractions and transformations. We provide a toolchain allowing for the discovery of MVP models (annotated with performance and frequency information) from relational databases. Moreover, we demonstrate that classical process mining techniques can be applied to any selected viewpoint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.