Abstract

One challenge of studying the many-body localization transition is defining the length scale that diverges upon the transition to the ergodic phase. In this manuscript we explore the localization properties of a ring with onsite disorder subject to an imaginary magnetic flux. We connect the imaginary flux which delocalizes single-particle orbitals of an Anderson-localized ring with the localization length of an open chain. We thus identify the delocalizing imaginary flux per site with an inverse localization length characterizing the transport properties of the open chain. We put this intuition to use by exploring the phase diagram of a disordered interacting chain, and we find that the inverse imaginary flux per bond provides an accessible description of the transition and its diverging localization length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call