Abstract

To maintain their metal ion homeostasis, bacteria critically depend on membrane integrity and controlled ion translocation. Terrestrial Streptomyces species undermine the function of the cytoplasmic membrane as diffusion barrier for metal cations in competitors using ionophores. Although the properties of the divalent cation ionophores calcimycin and ionomycin have been characterized to some extent in vitro, their effects on bacterial ion homeostasis, the factors leading to bacterial cell death, and their ecological role are poorly understood. To gain insight into their antibacterial mechanism, we determined the metal ion composition of the soil bacterium Bacillus subtilis after treatment with calcimycin and ionomycin. Within 15 min the cells lost approximately half of their cellular iron and manganese content whereas calcium levels increased. The proteomic response of B. subtilis provided evidence that disturbance of metal cation homeostasis is accompanied by intracellular oxidative stress, which was confirmed with a ROS-specific fluorescent probe. B. subtilis showed enhanced sensitivity to the ionophores in medium lacking iron or manganese. Furthermore, in the presence of ionophores bacteria were sensitive to high calcium levels. These findings suggest that divalent cation ionophores are particularly effective against competing microorganisms in soils rich in available calcium and low in available iron and manganese.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.