Abstract

We consider the psychophysical experiments in which the test subject’s binary reaction is determined by the prescribed exposure duration to a stimulus and a random variable subjective threshold. For example, when a subject is exposed to a millimeter wave beam for a prescribed duration, the occurrence of flight action is binary (yes or no). In experiments, in addition to the binary outcome, the actuation time of flight action is also recorded if it occurs; the delay from the initiation time to the actuation time of flight action is the human reaction time, which is not measurable. In this study, we model the random subjective threshold as a Weibull distribution and formulate an inference method for estimating the human reaction time, from data of prescribed exposure durations, binary outcomes and actuation times of flight action collected in a sequence of tests. Numerical simulations demonstrate that the inference of human reaction time based on the Weibull distribution converges to the correct value even when the underlying true model deviates from the inference model. This robustness of the inference method makes it applicable to real experimental data where the underlying true model is unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.