Abstract
Plant phenology is one of the main indicators of climate or other environmental processes. This paper assesses the detection accuracy of start of season (SOS) and end of season (EOS) for grassland vegetation in north China from 2001 to 2010 using SPOT-VEGETATION normalized difference vegetation index (NDVI) data sets and in situ observations. The cumulative NDVI is calculated and fitted using a logistic model to identify phenological transition dates. The curvature of the fitted logistic models predicts phenological transition dates that correspond to the times at which the curvature in the yearly integrated NDVI exhibits local minimums or maximums. Validating with in situ observations, phenological dates are extracted from satellite time series data and are accurate to within 10 days. The spatial trends of SOS and EOS are very similar for 2001–2010. SOS mainly occurs from the day of year (DOY) 110 to DOY 170, and EOS occurs from DOY 240 to DOY 300. SOS displays a marked delay from south to north, while EOS gradually advances, indicating regional differences in climate and terrain. However, the effect of latitude and longitude on the average EOS of alpine grasslands is not significantly different, while SOS at low latitude and high longitude is 10 days earlier than at high-latitude and high-longitude regions. We detected an overall advance in SOS of 3.1 days over 10 years, and a 1.3-day delay in EOS. However, the amplitude is low (about 5 days) and the changes in most regions are not significant (close to zero). The results in this paper are concordant with many reported studies that explored the phenology of grasslands in North China, which is an important component of global grasslands science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.