Abstract

Extracting environmental forces from noisy data is a common yet challenging task in complex physical systems. Machine learning (ML) represents a robust approach to this problem, yet is mostly tested on simulated data with known parameters. Here we use supervised ML to extract the electrostatic, dissipative, and stochastic forces acting on micron-sized charged particles levitated in an argon plasma (dusty plasma). By tracking the subpixel motion of particles in subsequent images, we successfully estimated these forces from their random motion. The experiments contained important sources of non-Gaussian noise, such as drift and pixel locking, representing a data mismatch from methods used to analyze simulated data with purely Gaussian noise. Our model was trained on simulated particle trajectories that included all of these artifacts, and used more than 100 dynamical and statistical features, resulting in a prediction with 50% better accuracy than conventional methods. Finally, in systems with two interacting particles, the model provided noncontact measurements of the particle charge and Debye length in the plasma environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.