Abstract

Electrocatalytic reduction of oxidized nitrogen compounds (NOx) promises to help rebalance the nitrogen cycle. It is widely accepted that nitrate reduction to NH4+/NH3 involves NO as an intermediate, and NO hydrogenation is the potential-limiting step of NO reduction. Whether *NO hydrogenates to *NHO or *NOH is still a matter of debate, which makes it difficult to optimize catalysts for NOx electroreduction. Here, "catalytic matrices" are used to swiftly extract features of active transition metal catalysts for NO electroreduction. The matrices show that active catalysts statistically stabilize *NHO over *NOH and have undercoordinated sites. Besides, square-symmetry active sites with Cu and other elements may prove active for NO electroreduction. Finally, multivariate regressions are able to reproduce the main features found by the matrices, which opens the door for more sophisticated machine-learning studies. In sum, catalytic matrices may ease the analysis of complex electrocatalytic reactions on multifaceted materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.