Abstract

A general method for obtaining effective normal modes of a molecular system from molecular dynamics simulations is presented. The method is based on a localization criterion for the Fourier transformed velocity time-correlation functions of the effective modes. For a given choice of the localization function used, the method becomes equivalent to the principal mode analysis (PMA) based on covariance matrix diagonalization. On the other hand, a proper choice of the localization function leads to a novel method with a strong analogy with the usual normal mode analysis of equilibrium structures, where the Hessian system at the minimum energy structure is replaced by the thermal averaged Hessian, although the Hessian itself is never actually calculated. This method does not introduce any extra numerical cost during the simulation and bears the same simplicity as PMA itself. It can thus be readily applied to ab initio molecular dynamics simulations. Three such examples are provided here. First we recover effective normal modes of an isolated formaldehyde molecule computed at 20 K in very good agreement with the results of a normal mode analysis performed at its equilibrium structure. We then illustrate the applicability of the method for liquid phase studies. The effective normal modes of a water molecule in liquid water and of a uracil molecule in aqueous solution can be extracted from ab initio molecular dynamics simulations of these two systems at 300 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.