Abstract
The extraction of drug–drug interactions (DDIs) is an important task in the field of biomedical research, which can reduce unexpected health risks during patient treatment. Previous work indicates that methods using external drug information have a much higher performance than those methods not using it. However, the use of external drug information is time-consuming and resource-costly. In this work, we propose a novel method for extracting DDIs which does not use external drug information, but still achieves comparable performance. First, we no longer convert the drug name to standard tokens such as DRUG0, the method commonly used in previous research. Instead, full drug names with drug entity marking are input to BioBERT, allowing us to enhance the selected drug entity pair. Second, we adopt the Key Semantic Sentence approach to emphasize the words closely related to the DDI relation of the selected drug pair. After the above steps, the misclassification of similar instances which are created from the same sentence but corresponding to different pairs of drug entities can be significantly reduced. Then, we employ the Gradient Harmonizing Mechanism (GHM) loss to reduce the weight of mislabeled instances and easy-to-classify instances, both of which can lead to poor performance in DDI extraction. Overall, we demonstrate in this work that it is better not to use drug blinding with BioBERT, and show that GHM performs better than Cross-Entropy loss if the proportion of label noise is less than 30%. The proposed model achieves state-of-the-art results with an F1-score of 84.13% on the DDIExtraction 2013 corpus (a standard English DDI corpus), which fills the performance gap (4%) between methods that rely on and do not rely on external drug information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.