Abstract

Natural tropical rainforests in China’s Xishuangbanna region have undergone dramatic conversion to rubber plantations in recent decades, resulting in altering the region’s environment and ecological systems. Therefore, it is of great importance for local environmental and ecological protection agencies to research the distribution and expansion of rubber plantations. The objective of this paper is to monitor dynamic changes of rubber plantations in China’s Xishuangbanna region based on multitemporal Landsat images (acquired in 1989, 2000, and 2013) using a C5.0-based decision-tree method. A practical and semiautomatic data processing procedure for mapping rubber plantations was proposed. Especially, haze removal and deshadowing were proposed to perform atmospheric and topographic correction and reduce the effects of haze, shadow, and terrain. Our results showed that the atmospheric and topographic correction could improve the extraction accuracy of rubber plantations, especially in mountainous areas. The overall classification accuracies were 84.2%, 83.9%, and 86.5% for the Landsat images acquired in 1989, 2000, and 2013, respectively. This study also found that the Landsat-8 images could provide significant improvement in the ability to identify rubber plantations. The extracted maps showed the selected study area underwent rapid conversion of natural and seminatural forest to a rubber plantations from 1989 to 2013. The rubber plantation area increased from 2.8% in 1989 to 17.8% in 2013, while the forest/woodland area decreased from 75.6% in 1989 to 44.8% in 2013. The proposed data processing procedure is a promising approach to mapping the spatial distribution and temporal dynamics of rubber plantations on a regional scale.

Highlights

  • As a result of the increasing global demand for natural rubber products, rubber plantations have become very lucrative and have been expanding drastically in many regions over the last several decades.[1,2] Asia, in particular, has become the world center of rubber production, accounting for 92% of the global natural rubber supply.[3]

  • It is of great importance for local environmental and ecological protection agencies to research the distribution and spread of rubber plantations and to be able to monitor their dynamic changes

  • It is of great importance for local economic development and ecological protection agencies to be able to track rubber plantation growth and monitor its dynamic change using remote sensing technology

Read more

Summary

Introduction

As a result of the increasing global demand for natural rubber products, rubber plantations have become very lucrative and have been expanding drastically in many regions over the last several decades.[1,2] Asia, in particular, has become the world center of rubber production, accounting for 92% of the global natural rubber supply.[3]. In terms of some aims of reducing emissions from deforestation and forest degradation, carbon sequestration of rubber plantations is limited in comparison to that of natural forests, which means that expansion of rubber plantations very likely results in significant increase in net emission of carbon dioxide.[14,15] In the case of the Xishuangbanna region, China, the large-scale conversion of forests to rubber plantations has likely played an important role in changes of local climate, such as diminishing rainfall, increasing the likelihood of more severe droughts, and drastically lowering the frequency of fog between the mid-1950s and the mid-1980s.8,12

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call