Abstract
Dialdehyde cellulose nanocrystals (DCNC) are defined as C2 and C3 aldehyde nanocellulose, which can be used as raw materials for nanocellulose derivatization, owing to the high activity of aldehyde groups. Herein, a comparative study in NaIO4 pre-oxidation and synchronous oxidation is investigated for DCNC extraction via choline chloride (ChCl)/urea-based deep eutectic solvent (DES). Ring-liked DCNC with an average particle size of 118 ± 11 nm, a yield of 49.25 %, an aldehyde group content of 6.29 mmol/g, a crystallinity of 69 %, and rod-liked DCNC with an average particle size of 109 ± 9 nm, a yield of 39.40 %, an aldehyde group content of 3.14 mmol/g, a crystallinity of 75 % can be extracted via optimized DES treatment combined with pre-oxidation and synchronous oxidation, respectively. In addition, the average particle size, size distribution, and aldehyde group content of DCNC were involved. TEM, FTIR, XRD, and TGA results reveal the variation of microstructure, chemical structure, crystalline structure, and thermostability of two kinds of DCNC during extraction even though the obtained DCNC exhibiting different micromorphology, pre-oxidation, or synchronous oxidation during ChCl/urea-based DES treatment can be considered as an efficient approach for DCNC extraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.