Abstract

We present easily programmable expansions, allowing the calculation of the weights of local covalent and ionic structures of a chemical bond from usual delocalized wave functions; they are obtained in the framework of the electron-expansion methodology, in which the hole conditions (involved by definition in a covalent or ionic structure) are expanded in terms involving only electrons. From the derived relations, true for both HF and correlated levels, one can also express the covalency/ionicity and the localization of a usual two-electron two-center (2e/2c) bond in terms of electronic populations. The three-electron populations are crucial for bond localization. On the contrary, in 2e/2c bonding, and particularly in Charge-Shift bonds (which show enhanced covalent-ionic interactions) although the three-electron populations can be non-negligible, they are not important for the covalency/ionicity of these bonds. Numerical applications and discussion are given for correlated MO wave functions of butadiene, hexatriene, and pyrrole molecules on the basis of both natural atomic orbitals (NAOs) (orthogonal orbitals) and pre-NAOs (nonorthogonal orbitals).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call