Abstract

Compound profiling matrices record assay results for compound libraries tested against panels of targets. In addition to their relevance for exploring structure–activity relationships, such matrices are of considerable interest for chemoinformatic and chemogenomic applications. For example, profiling matrices provide a valuable data resource for the development and evaluation of machine learning approaches for multitask activity prediction. However, experimental compound profiling matrices are rare in the public domain. Although they are generated in pharmaceutical settings, they are typically not disclosed. Herein, we present an algorithm for the generation of large profiling matrices, for example, containing more than 100 000 compounds exhaustively tested against 50 to 100 targets. The new methodology is a variant of biclustering algorithms originally introduced for large-scale analysis of genomics data. Our approach is applied here to assays from the PubChem BioAssay database and generates profiling matrices of increasing assay or compound coverage by iterative removal of entities that limit coverage. Weight settings control final matrix size by preferentially retaining assays or compounds. In addition, the methodology can also be applied to generate matrices enriched with active entries representing above-average assay hit rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.