Abstract

Increasing access to extensively replicated and broadly distributed tree-ring collections has led to a greater use of these large data sets to investigate climate forcing on tree growth. However, the number of chronologies added to large accessible databases is declining and few are updated, while chronologies are often sparsely distributed and are more representative of marginal growing environments. On the other hand, National Forest Inventories (NFI), although poorly replicated at the plot level as compared to classic dendrochronological sampling, contain a large amount of tree-ring data with high spatial density designed to be spatially representative of the forest cover. We propose an a posteriori approach to validating tree-ring measurements and dating, selecting individual tree-ring width time series, and building average chronologies at various spatial scales based on an extensive collection of ring width measurements of nearly 94,000 black spruce trees distributed over a wide area and collected as part of the NFI in the province of Quebec, Canada. Our results show that reliable signals may be derived at various spatial scales (from 37 to 583,000 km2) from NFI increment core samples. Signals from independently built chronologies are spatially coherent with each other and well-correlated with independent reference chronologies built at the stand level. We thus conclude that tree-ring data from NFIs provide an extraordinary opportunity to strengthen the spatial and temporal coverage of tree-ring data and to improve coordination with other contemporary measurements of forest growth to provide a better understanding of tree growth-climate relationships over broad spatial scales.

Highlights

  • Because tree-ring measurements can be used to estimate the influence of environmental forces on annual wood production [1,2], they have been recognized as a key resource to provide a long-term perspective of the growth response to global environmental changes [3,4]

  • The number of valid chronologies generated depended on the spatial scale considered, with one chronology covering 100% of the territory being generated at the meridional scale and 562 chronologies covering 35% of the territory being generated at the smallest, district, scale

  • The Mcor statistic is higher at finer spatial scales of sample agglomeration, but decreases exponentially as sample dispersion increases. These results suggest that broad-scale climate drivers partly regulate interannual tree growth variations over a broad spatial scale, but that locally, coherence in tree-ring chronologies is higher as they integrate tree response to local disturbances and smaller-scale climatic variability

Read more

Summary

Introduction

Because tree-ring measurements can be used to estimate the influence of environmental forces on annual wood production [1,2], they have been recognized as a key resource to provide a long-term perspective of the growth response to global environmental changes [3,4]. Tree-ring signal from extensive forest inventory data

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.