Abstract

We have explored tsunami current signals in maritime Automatic Identification System (AIS) data during the 2011 Tohoku, Japan, tsunami. The AIS data were investigated in detail taking into account ship motion and response to tsunami current. Ship velocity derived from AIS data was divided into two components in terms of the ship heading: heading-normal and heading-parallel directions. The heading-normal velocity showed good agreement with the simulated tsunami current, as mentioned in our former research. Here, we found the heading-normal velocity was contaminated by non-tsunami noises that were mostly related to the ship yaw motion around the pivot point. The noises due to the yaw motion were reasonably corrected in the heading-normal velocity. The corrected heading-normal velocity clearly showed better agreement with the simulated tsunami current. Although the heading-parallel velocity is basically the navigation speed, and is mostly controlled by ships’ captain, we could find the heading-parallel velocity was also drifted by tsunami currents. The corrected heading-normal velocity was still a ship response to the tsunami current. Based on an equation of a ship response to tsunami currents, we numerically estimated tsunami current from the corrected heading-normal velocity. We could find very slight improvements in estimating the tsunami currents, which indicated that this operation possibly worked as a secondary correction. Tsunami currents of tens of centimeters per second are expected to be suitably detected using AIS based on discussion on detection limit.

Highlights

  • There are many kinds of observations of tsunamis

  • Inazu et al (2018) found that tsunami currents could be detected using navigation data derived from the Automatic Identification System (AIS)

  • Ship velocity during offshore navigation strongly deviated with mostly equivalent tsunami current velocity for the heading-normal direction and for the headingparallel direction

Read more

Summary

Introduction

There are many kinds of observations of tsunamis. We have mostly measured sea surface elevation for quantitative evaluations (Satake 2007; Joseph 2011). Inazu et al (2018) found that tsunami currents could be detected using navigation data derived from the Automatic Identification System (AIS). The components derived from ROT are well corrected from the HDG-normal velocity, in particular for several ships of #3, #4, #6, and #11 (Fig. 6b). The corrected HDG-normal velocity (v = vn − vs) shows better agreement with the simulated tsunami currents (vc).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.