Abstract

For many animals, chemosensation is essential for guiding social behavior. However, because multiple factors can modulate levels of individual chemical cues, deriving information about other individuals via natural chemical stimuli involves considerable challenges. How social information is extracted despite these sources of variability is poorly understood. The vomeronasal system provides an excellent opportunity to study this topic due to its role in detecting socially relevant traits. Here, we focus on two such traits: a female mouse’s strain and reproductive state. In particular, we measure stimulus-induced neuronal activity in the accessory olfactory bulb (AOB) in response to various dilutions of urine, vaginal secretions, and saliva, from estrus and non-estrus female mice from two different strains. We first show that all tested secretions provide information about a female’s receptivity and genotype. Next, we investigate how these traits can be decoded from neuronal activity despite multiple sources of variability. We show that individual neurons are limited in their capacity to allow trait classification across multiple sources of variability. However, simple linear classifiers sampling neuronal activity from small neuronal ensembles can provide a substantial improvement over that attained with individual units. Furthermore, we show that some traits are more efficiently detected than others, and that particular secretions may be optimized for conveying information about specific traits. Across all tested stimulus sources, discrimination between strains is more accurate than discrimination of receptivity, and detection of receptivity is more accurate with vaginal secretions than with urine. Our findings highlight the challenges of chemosensory processing of natural stimuli, and suggest that downstream readout stages decode multiple behaviorally relevant traits by sampling information from distinct but overlapping populations of AOB neurons.

Highlights

  • Social animals are extremely adept at extracting information about conspecifics and many species rely on chemosensory cues to achieve this goal [1,2,3]

  • Chemical senses play a central role in guiding social behaviors by conveying information about particular behaviorally relevant traits

  • We focus on detection of a female’s genetic background and estrus-state by neurons in the first vomeronasal brain relay, the accessory olfactory bulb (AOB)

Read more

Summary

Introduction

Social animals are extremely adept at extracting information about conspecifics and many species rely on chemosensory cues to achieve this goal [1,2,3]. If a given trait is associated with a particular level of some compound, dilution or concentration of the stimulus source could confound correct trait detection [4, 5]. Another factor is the influence of multiple ecologically relevant traits on the levels of any one type of molecule. Compound concentrations likely differ across secretions and interpretation of their content must account for the secretion sampled. Given these sources of variability, reliable detection of any trait becomes a significant computational challenge

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.