Abstract

Digital technology is fast changing in the recent years and with this change, the number of data systems, sources, and formats has also increased exponentially. So the process of extracting data from these multiple source systems and transforming it to suit for various analytics processes is gaining importance at an alarming rate. In order to handle Big Data, the process of transformation is quite challenging, as data generation is a continuous process. In this paper, we extract data from various heterogeneous sources from the web and try to transform it into a form which is vastly used in data warehousing so that it caters to the analytical needs of the machine learning community.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.