Abstract
The neural mechanisms of stereoscopic 3D shape perception have only recently been investigated. Here we review the two cortical regions in which these mechanisms have been studied so far in macaques: a small subpart of inferotemporal cortex called TEs, and the caudal intraparietal (CIP) region. Neurons in TEs respond selectively to the orientation and curvature in depth of stereoscopic surfaces and this region provides a detailed 3D shape description of surface boundaries and surface content. This description is evoked only by binocular stimuli in which subjects see depth and it does not vary if depth is specified by different cues. Neurons in CIP are a selective for orientation in depth of surfaces and elongated objects, and their responses are also unaffected by changes in depth cues. Thus, stereoscopic 3D shape is processed in both the dorsal, occipito-parietal and the ventral, occipito-temporal streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.