Abstract
In order to determine whether characterization of organic carbon (OC) in particulate matter (PM) is limited due to the extraction or analysis, we have evaluated the OC extractability from three model PM matrices (wood smoke, diesel exhaust, and urban PM). We have compared hot pressurized water (HPW) fractionation and sequential organic solvent Soxhlet extraction. The evaluation of extraction efficiency was based on three methods: thermal optical transmittance (TOT), reflectance, and total organic carbon analyses. For all three PM samples, comparable OC yields were obtained with both extraction methods accounting for ∼ 45–60% of the total OC found in PM (based on TOT). These recoveries also suggest that a significant portion of OC in all PM materials remains unextractable. Further investigation of OC distribution in different polarity fractions using spectrometric techniques (including gas chromatography with mass spectrometry, carbon 1s near-edge X-ray absorption fine structure, and proton nuclear magnetic resonance spectroscopies) revealed that sequential extraction may be useful approach to differentiate the constituents attributed to primary emission sources and to secondary aerosol formation, respectively. In contrast to the common expectation that polarity of constituents corresponds to the polarity of the extracting solvent, distribution of OC species (among the different polarity fractions) also depended on their availability (i.e., analyte-matrix interactions). It appears that secondary OC species (e.g., diacids) are not deeply embedded into the matrix, and thus were recovered in the solvent of a corresponding polarity. By contrast, primary OC constituents are strongly bound to the matrix and thus required harsh conditions to be recovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.