Abstract

Abstract Extracting the useful information has been used almost everywhere in many fields of mathematics and applied mathematics. It is a classical ill-posed problem due to the unstable dependence of approximations on small perturbation of the data. The traditional regularization methods depend on the choice of the regularization parameter, which are closely related to an available accurate upper bound of noise level; thus it is not appropriate for the randomly distributed noise with big or unknown variance. In this paper, a purely data driven statistical regularization method is proposed, effectively extracting the information from randomly noisy observations. The rigorous upper bound estimation of confidence interval of the error in L 2 L^{2} norm is established, and some numerical examples are provided to illustrate the effectiveness and computational performance of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.