Abstract

The innermost layer of fetal membranes is amnion which has anti-adhesive, anti-inflammation and viscoelastic properties, as well as low immunogenicity. Amniotic membrane has been employed in variety of clinical fields as a natural biomaterial. Amniotic epithelial cells possess stem cell characteristics and capability to differentiate into endothelial cells. The basement membrane of amnion is an extracellular matrix enriched scaffold to support adhesion of endothelial cells. The matrix of amniotic membrane contains two kinds of glycosaminoglycans including perlecan (a heparan sulfate proteoglycan) and hyaluronic acid which both inhibit blood coagulation. Moreover, the other ingredients of amniotic membrane such as pigment-epithelium derived factor (PEDF), IL-10, MMP-9 inhibit platelet aggregation. Based on some biochemical and biomechanical evidences, we hypothesized in this paper that amniotic membrane could prevent thrombosis and hemolysis; therefore, has the capability to be applied in blood contacting devices and implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call