Abstract

Background and aimKaempferia galanga, also known as aromatic Ginger (kencur) in Indonesia, has been widely explored and shows potential as an anti-inflammatory agent. However, there has been limited research to show a possible mechanism by which aromatic ginger inhibits lipoxygenase (LOX). Therefore, this study aims to determine the anti-inflammatory activity of aromatic ginger by comparing extract, fractions, and ethyl-p-methoxycinnamate (EPMC) isolate, as well as possible LOX inhibition activity, by reducing the production of leukotriene B4 (LTB4). Experimental procedureTwo animal models were used, namely, the carrageenan-induced granuloma air pouch model and the pleurisy model. The test substance was administered 1 h before carrageenan induction, which was performed orally for each animal model. The number of leukocytes and the malondialdehyde (MDA) levels, leukotriene B4 (LTB4) levels, and histology were observed. GC-MS and LC-MS were used for analysis of the chemical compounds in the test samples. Results and conclusionThe results of GC-MS analysis showed that aromatic ginger rhizome extract and fractions were dominated by ethyl-trans-p-methoxycinnamate, with the highest level found in the extract. K. galanga showed significant anti-inflammatory activity compared to the control (p < 0.01) in both the granuloma air pouch and pleurisy models. The results of examining the LTB4 concentration showed comparable activity between K. galanga extract, fractions and EMPC isolate, these results were not better than those of zileuton. Overall, this study shows that aromatic ginger extract, fractions and EPMC isolate have anti-inflammatory properties and have the potential to inhibit LOX, thereby reducing LTB4 levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.