Abstract
Bacteria, which often are subjected to fluctuations in nutrients, temperature, radiation, pH, etc., adapt to the physico-chemical environment they live in by making the appropriate changes in their gene expression patterns. During the last decades it has become increasingly clear that bacteria, in addition, have a "social life", and that changes in gene expression can also be elicited by the presence of other bacteria. Traditionally bacteria have been viewed as solitary organisms that in general do not interact with other bacteria in a coordinated manner. Recent advances in the field of bacterial cell-to-cell communication has proved this to be a misconception, and mounting evidence now show that bacterial group behaviour is ubiquitous in nature. Competence for natural genetic transformation in Streptococcus pneumoniae, which has been studied for more than seventy years, has become a paradigm for intercellular communication and cell density dependent regulation of gene expression in Gram-positive bacteria. There has been rapid progress recently in elucidating the molecular mechanisms behind regulation of natural competence in S. pneumoniae. In this review, we describe the current status of our knowledge of natural competence in this bacterium, with particular emphasis on the early phase of competence induction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.