Abstract

Extracellular redox (reduction-oxidation) state is a factor that serves as an important regulator of cell-microenvironmental interactions and is determined by several known variables; including redox-modulating proteins that are located on the plasma membrane or outside of cells, extracellular thiol/disulfide couples, and reactive oxygen species (ROS)/reactive nitrogen species (RNS) that are capable of traveling across plasma membranes into the extracellular space. The extracellular redox state works in concert with the intracellular redox state to control both the influx and efflux of ROS/RNS that may serve to modulate redox signaling or to perturb normal cellular processes or both. Under physiologic conditions, the extracellular space is known to have a relatively more-oxidized redox state than the interior of the cell. During pathologic conditions, such as cancer, the extracellular redox state may be altered, causing specific proteins such as proteases, soluble factors, or the extracellular matrix to have altered functions or activities. Recent studies have strongly supported an important relation between the extracellular redox state and cancer cell aggressiveness. The purpose of this review is to identify redox buffer networks in extracellular spaces and to emphasize the possible roles of the extracellular redox state in cancer, knowledge that may contribute to potential therapeutic interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call