Abstract

Extracellular vesicles (EVs) are rounded vesicles enclosed by a lipid bilayer membrane, released by eukaryotic cells and by bacteria. They carry various types of bioactive substances, including nucleic acids, proteins, and lipids. Depending on their cargo, EVs have a variety of well‐studied functions in mammalian systems, including cell‐to‐cell communication, cancer progression, and pathogenesis. In contrast, EVs in plant cells (which have rigid walls) have received very little research attention for many decades. Increasing evidence during the past decade indicates that both plant cells and plant pathogens are able to produce and secrete EVs, and that such EVs play key roles in plant–pathogen interactions. Plant EVs contains small RNAs (sRNAs) and defence‐related proteins, and may be taken up by pathogenic fungi, resulting in reduced virulence. On the other hand, EVs released by gram‐negative bacteria contain a wide variety of effectors and small molecules capable of activating plant immune responses via pattern‐recognition receptor‐ and BRI1‐ASSOCIATED RECEPTOR KINASE‐ and SUPPRESSOR OF BIR1‐mediated signalling pathways, and salicylic acid‐dependent and ‐independent processes. The roles of EVs in plant–pathogen interactions are summarized in this review, with emphasis on important molecules (sRNAs, proteins) present in plant EVs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.