Abstract

Doxorubicin (DOXO)-induced cardiomyopathy (DIC) is a lethal complication in cancer patients. Major mechanisms of DIC involve oxidative stress in cardiomyocytes and hyperactivated immune response. Extracellular vesicles (EVs) mediate cell-cell communication during oxidative stress. However, functions of circulating EVs released after chronic DOXO exposure on cardiomyocytes and immune cells are still obscured. Herein, we developed a DIC in vivo model using male Wistar rats injected with 3 mg/kg DOXO for 6 doses within 30 days (18 mg/kg cumulative dose). One month after the last injection, the rats developed cardiotoxicity evidenced by increased BCL2-associated X protein and cleaved caspase-3 in heart tissues, along with N-terminal pro B-type natriuretic peptide in sera. Serum EVs were isolated by size exclusion chromatography. EV functions on H9c2 cardiomyocytes and NR8383 macrophages were evaluated. EVs from DOXO-treated rats (DOXO_EVs) attenuated ROS production via increased glutathione peroxidase-1 and catalase gene expression, and reduced hydrogen peroxide-induced cell death in cardiomyocytes. In contrast, DOXO_EVs induced ROS production, interleukin-6, and tumor necrosis factor-alpha, while suppressing arginase-1 gene expression in macrophages. These results suggested the pleiotropic roles of EVs against DIC, which highlight the potential role of EV-based therapy for DIC with a concern of its adverse effect on immune response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call