Abstract

Amorphous silica has been approved as a food and pharmaceutical additive. However, its potential to enhance the carcinogenicity of epithelial cells is incontrovertible. With their expanded surface area per unit mass and distinctive cellular incorporation, nano-sized silica particles (nSPs) exhibit heightened cytotoxicity compared to micrometer-sized counterparts. The precise effect of nSPs on the generation of small extracellular vesicles (sEVs) within endosomes after cellular uptake remains unclear. In the present study, we explored the secretion of sEVs from cells and their functional implications following exposure to nSPs. Our findings demonstrate that nSP50 exposure not only induced epithelial-mesenchymal transition (EMT) but also promoted the maturation of multivesicular endosomes (MVEs) along with the secretion of sEVs in A549 cells. Inhibition of sEV secretion using GW4869 and apoptosis activator 2 exacerbated nSP50-induced EMT, indicating that sEV secretion may suppress EMT. Analysis of the function of sEV in a cell-free system revealed that co-incubation of sEVs with nSP50 led to the formation of micrometer-sized aggregates, which exhibited limited uptake efficiency within A549 cells. These results strongly suggest that the secretion of sEVs plays a protective role against the cytotoxicity attributed to nSP50 exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call