Abstract
Cells release diverse types of membrane-bound vesicles of endosomal and plasma membrane origin, termed exosomes and microvesicles, respectively. Extracellular vesicles (EVs) represent an important mode of intercellular communication by transferring select RNAs, proteins, and lipids between cells. The present studies tested the hypothesis that the elongating ovine conceptus and uterus produces EVs that mediate conceptus-maternal interactions during early pregnancy. In Study 1, EVs were purified from uterine luminal fluid of Day 14 cyclic sheep. The EVs were fluorescently labeled with PKH67 dye and infused into the uterine lumen of pregnant sheep for 6 days using an osmotic pump. On Day 14, labeled EVs were observed in the conceptus trophectoderm and uterine epithelia, but not in the uterine stroma or myometrium. In Study 2, Day 14 conceptuses were cultured ex vivo for 24 h and found to release EVs into the culture medium. Proteomics analysis of the Day 14 conceptus-derived EVs identified 231 proteins that were enriched for extracellular space and several protein classes, including proteases, protease inhibitors, chaperones and chaperonins. RNA sequencing of Day 14 conceptus-derived EVs detected expression of 512 mRNAs. The top-expressed genes were overrepresented in ribosomal functions and components. Isolated EVs from conceptuses were fluorescently labeled with PKH67 and infused into the uterine lumen of cyclic sheep for 6 days using an osmotic pump. On Day 14, labeled EVs were observed in the uterine epithelia, but not in the uterine stroma or myometrium. Labeled EVs were not observed in the ovary or in other maternal tissues. These studies support the ideas that EVs emanate from both the conceptus trophectoderm and uterine epithelia, and are involved in intercellular communication between those cells during the establishment of pregnancy in sheep.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.