Abstract

Osteoarthritis (OA) is a common age-related disease that correlates with a high number of senescent cells in joint tissues. Senescence has been reported to be one of the main drivers of OA pathogenesis, in particular via the release of senescence-associated secretory phenotype (SASP) factors. SASP factors are secreted as single molecules and/or packaged within extracellular vesicles (EVs), thereby contributing to senescent phenotype dissemination. Targeting senescent cells using senolytics or senomorphics has therefore been tested and improvement of OA-associated features has been reported in murine models. Mesenchymal stromal cells (MSCs) and their derived EVs (MSC-EVs) are promising treatments for OA, exerting pleiotropic functions by producing a variety of factors. However, functions of MSCs and MSC-EVs are affected by aging. In this review, we discuss on the impact of the senescent environment on functions of aged MSC-EVs and on the anti-aging properties of MSC-EVs in the context of OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call