Abstract

BackgroundAcute compartment syndrome (ACS) is one of the most common complications of musculoskeletal injury, leading to the necrosis and demise of skeletal muscle cells. Our previous study showed that embryonic stem cells-derived mesenchymal stem cells (ESC–MSCs) are novel therapeutics in ACS treatment. As extracellular vesicles (EVs) are rapidly gaining attention as cell-free therapeutics that have advantages over parental stem cells, the therapeutic potential and mechanisms of EVs from ESC–MSCs on ACS need to be explored.MethodIn the present study, we examined the protective effects in the experimental ACS rat model and investigated the role of macrophages in mediating these effects. Next, we used transcriptome sequencing to explore the mechanisms by which ESC–MSC-EVs regulate macrophage polarization. Furthermore, miRNA sequencing was performed on ESC–MSC-EVs to identify miRNA candidates associated with macrophage polarization.ResultsWe found that intravenous administration of ESC–MSC-EVs, given at the time of fasciotomy, significantly promotes the anti-inflammation process, angiogenesis, and functional recovery of muscle in ACS. The beneficial effects were associated with ESC–MSC-EVs affecting macrophage polarization by delivering various miRNAs which regulate NF-κB, JAK/STAT, and PI3K/AKT pathways. Our data further illustrate that ESC–MSC-EVs mainly modulate macrophage polarization via the miR-21/PTEN, miR-320a/PTEN, miR-423/NLRP3, miR-100/mTOR, and miR-26a/TLR3 axes.ConclusionTogether, our results demonstrated the beneficial effects of ESC–MSC-EVs in ACS, wherein the miRNAs present in ESC–MSC-EVs regulate the polarization of macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.