Abstract
Mesenchymal stem/stromal cells (MSCs) are effective therapeutic agents that ameliorate inflammation through paracrine effect; in this regard, extracellular vesicles (EVs) have been frequently studied. To improve the secretion of anti-inflammatory factors from MSCs, preconditioning with hypoxia or hypoxia-mimetic agents has been attempted and the molecular changes in preconditioned MSC-derived EVs explored. In this study, we aimed to investigate the increase of hypoxia-inducible factor 1-alpha (HIF-1α)/cyclooxygenase-2 (COX-2) in deferoxamine (DFO)-preconditioned canine MSC (MSCDFO) and whether these molecular changes were reflected on EVs. Furthermore, we focused on MSCDFO derived EVs (EVDFO) could affect macrophage polarization via the transfer function of EVs. In MSCDFO, accumulation of HIF-1α were increased and production of COX-2 were activated. Also, Inside of EVDFO were enriched with COX-2 protein. To evaluate the transferring effect of EVs to macrophage, the canine macrophage cell line, DH82, was treated with EVs after lipopolysaccharide (LPS) stimulation. Polarization changes of DH82 were evaluated with quantitative real-time PCR and immunofluorescence analyses. When LPS-induced DH82 was treated with EVDFO, phosphorylation of signal transducer and transcription3 (p-STAT3), which is one of key factor of inducing M2 phase, expression was increased in DH82. Furthermore, treated with EVDFO in LPS-induced DH82, the expression of M1 markers were reduced, otherwise, M2 surface markers were enhanced. Comparing with EVDFO and EVnon. DFO preconditioning in MSCs activated the HIF-1α/COX-2 signaling pathway; Transferring COX-2 through EVDFO could effectively reprogram macrophage into M2 phase by promoting the phosphorylation of STAT3.
Highlights
Among the secretomes of mesenchymal stem/stromal cells (MSCs), extracellular vesicles (EVs) have been studied frequently for playing an important role in transmitting signals across cells [1]
We aimed to investigate the increase of hypoxia-inducible factor 1-alpha (HIF-1α)/cyclooxygenase-2 (COX-2) in deferoxamine (DFO)-preconditioned canine MSC (MSCDFO) and whether these molecular changes were reflected on EVs
Inside of EVDFO were enriched with COX-2 protein
Summary
Among the secretomes of mesenchymal stem/stromal cells (MSCs), extracellular vesicles (EVs) have been studied frequently for playing an important role in transmitting signals across cells [1]. Some studies have been conducted using hypoxia-preconditioned methods to improve antiinflammatory effect of MSC-derived EVs [6]. Several studies have shown deferoxamine (DFO), a hypoxia mimetic agent, to be usable in hypoxia preconditioning [7] and improve angiogenesis effect of MSC-derived EVs [8]. Mesenchymal stem/stromal cells (MSCs) are effective therapeutic agents that ameliorate inflammation through paracrine effect; in this regard, extracellular vesicles (EVs) have been frequently studied. We aimed to investigate the increase of hypoxia-inducible factor 1-alpha (HIF-1α)/cyclooxygenase-2 (COX-2) in deferoxamine (DFO)-preconditioned canine MSC (MSCDFO) and whether these molecular changes were reflected on EVs. we focused on MSCDFO derived EVs (EVDFO) could affect macrophage polarization via the transfer function of EVs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.