Abstract

Extracellular vesicles (EVs) are lipid-bound vesicles produced into the extracellular space by cells. Apoptotic bodies (ApoBD), microvesicles (MVs), and exosomes are examples of EVs, which act as essential regulators in cell-cell communication in both normal and diseased conditions. Natural cargo molecules such as miRNA, messenger RNA, and proteins are carried by EVs and transferred to nearby cells or distant cells through the process of circulation. Different signalling cascades are then influenced by these functionally active molecules. The information to be delivered to the target cells depends on the substances within the EVs that also includes synthesis method. EVs have attracted interest as potential delivery vehicles for therapies due to their features such as improved circulation stability, biocompatibility, reduced immunogenicity, and toxicity. Therefore, EVs are being regarded as potent carriers of therapeutics that can be used as a therapeutic agent for diseases like cancer. This review focuses on the exosome-mediated drug delivery to cancer cells and the advantages and challenges of using exosomes as a carrier molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.