Abstract

Cadmium (Cd), as one of the most carcinogenic substances, poses a great threat to human health. With the development of microbial remediation technology, the necessity for urgent research into the mechanism of Cd toxicity to bacteria has arisen. In this study, a highly Cd-tolerant strain (up to 225 mg/L) was isolated and purified from Cd-contaminated soil, which was identified by 16S rRNA as a strain of Stenotrophomonas sp., thus manually designated as SH225. By testing OD600 of the strain, we indicated that Cd concentrations below 100 mg/L had no discernible impact on the biomass of SH225. When the Cd concentration was over 100 mg/L, the cell growth was significantly inhibited, while the number of extracellular vesicles (EVs) was greatly elevated. After extraction, cell-secreted EVs were confirmed to contain large amounts of Cd cations, highlighting the crucial function of EVs in the Cd detoxification of SH225. Meanwhile, the TCA cycle was vastly enhanced, suggesting that the cells provided adequate energy supply for EVs transport. Thus, these findings emphasized the crucial role played by vesicles and TCA cycle in Cd detoxification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.