Abstract

Liver plays a central role in elimination of circulating extracellular vesicles (EVs), and it also significantly contributes to EV release. However, the involvement of the different liver cell populations remains unknown. Here, we investigated EV uptake and release both in normolipemia and hyperlipidemia. C57BL/6 mice were kept on high fat diet for 20–30 weeks before circulating EV profiles were determined. In addition, control mice were intravenously injected with 99mTc-HYNIC-Duramycin labeled EVs, and an hour later, biodistribution was analyzed by SPECT/CT. In vitro, isolated liver cell types were tested for EV release and uptake with/without prior fatty acid treatment. We detected an elevated circulating EV number after the high fat diet. To clarify the differential involvement of liver cell types, we carried out in vitro experiments. We found an increased release of EVs by primary hepatocytes at concentrations of fatty acids comparable to what is characteristic for hyperlipidemia. When investigating EV biodistribution with 99mTc-labeled EVs, we detected EV accumulation primarily in the liver upon intravenous injection of mice with medium (326.3 ± 19.8 nm) and small EVs (130.5 ± 5.8 nm). In vitro, we found that medium and small EVs were preferentially taken up by Kupffer cells, and liver sinusoidal endothelial cells, respectively. Finally, we demonstrated that in hyperlipidemia, there was a decreased EV uptake both by Kupffer cells and liver sinusoidal endothelial cells. Our data suggest that hyperlipidema increases the release and reduces the uptake of EVs by liver cells. We also provide evidence for a size-dependent differential EV uptake by the different cell types of the liver. The EV radiolabeling protocol using 99mTc-Duramycin may provide a fast and simple labeling approach for SPECT/CT imaging of EVs biodistribution.

Highlights

  • Extracellular vesicles (EV) are mostly spherical, phospholipid bilayer-enclosed particles [1]

  • The goal of the present study was to examine the dynamics of EV release and uptake by liver cells

  • Here, we report for the first time the cell type-specific involvement of liver cells in the release and uptake of mEVs and sEVs

Read more

Summary

Introduction

Extracellular vesicles (EV) are mostly spherical, phospholipid bilayer-enclosed particles [1]. They were originally thought to be carriers for the removal of cellular waste [2]. We know that due to their complex molecular composition (including nucleic acids, lipids, proteins and carbohydrates), they are significant players of cell–cell communication [3, 4]. The composition of EVs is determined by the types and functional states of the donor cells. Even though the classification of EVs is based on their biogenesis, often it is not possible to determine the biogenetic origin of EVs. Sizebased subfractions of EVs include large EVs (lEVs, > 1 μm), medium EVs (mEVs, 150 nm to 1 μm) and small EVs (sEVs ≤ 100 nm) [6]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call