Abstract

In recent years, a wealth of studies has identified various molecular species released by cardiac muscle under physiological and pathological conditions that exert local paracrine and/or remote endocrine effects. Conversely, humoral factors, principally produced by organs such as skeletal muscle, kidney, or adipose tissue, may affect the function and metabolism of normal and diseased hearts. Although this cross communication within cardiac tissue and between the heart and other organs is supported by mounting evidence, research on the role of molecular mediators carried by exosomes, microvesicles, and apoptotic bodies, collectively defined as extracellular vesicles (EVs), is at an early stage of investigation. Once released in the circulation, EVs can potentially reach any organ where they transfer their cargo of proteins, lipids, and nucleic acids that exert potent biological effects on recipient cells. Although there are a few cases where such signaling was clearly demonstrated, the results from many other studies can only be tentatively inferred based on indirect evidence obtained by infusing exogenous EVs in experimental animals or by adding them to cell cultures. This area of research is in rapid expansion and most mechanistic interpretations may change in the near future; hence, the present review on the role played by EV-carried mediators in the two-way communication between heart and skeletal muscle, kidneys, bone marrow, lungs, liver, adipose tissue, and brain is necessarily limited. Nonetheless, the available data are already unveiling new, intriguing, and ample scenarios in cardiac physiology and pathophysiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.