Abstract

It is becoming increasingly evident that key mechanisms of mesenchymal stem cell (MSC) efficacy appear to associate with paracrine activities, and the delivery of cargos through extracellular vesicles (EVs) controls the mechanistic actions of MSCs. Thus, this study clarified a possible mechanism by which EV-encapsulated NEAT1 from adipose-derived mesenchymal stem cells (ADSCs) might mediate gemcitabine resistance in pancreatic cancer (PCa). Microarray profile suggested a differentially expressed lncRNA NEAT1 in PCa, and we determined its expression in PCa cells. NEAT1 was found to be upregulated in PCa. The binding affinity among NEAT1, miR-491-5p, and Snail was identified through bioinformatic analysis and experimental validation. NEAT1 competitively bound to miR-491-5p to elevate Snail expression and diminish SOCS3 expression. PCa cells were cocultured with EVs extracted from ADSCs, followed by assessment of malignant phenotypes, tumorigenesis, and gemcitabine resistance of PCa cells using gain- or loss-of-function experiments. ADSC-derived EVs carrying NEAT1 promoted PCa cell proliferation, migration, and gemcitabine resistance in vitro and enhanced tumorigenicity in vivo by inhibiting miR-491-5p and SOCS3 and upregulating Snail. Collectively, the findings from our study found a new potential strategy for gemcitabine resistance in PCa by illustrating the mechanistic insights of oncogenic ADSC-derived EVs-loaded NEAT1 via regulating the miR-491-5p/Snail/SOCS3 axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.