Abstract
Introduction: Polycystic ovary syndrome (PCOS) is the communal endocrine illness in women and the most common cause of infertility due to lack of ovulation. The exact cause of PCOS is still unknown. Affected women may have difficulty getting pregnant due to ovulation problems. Various methods have not been effective in the treatment of PCOS due to the positive role of photobiomodulation therapy (PBMT) and extracellular vesicles (ECV) obtained from cord blood plasma in the treatment of various diseases. The aim of this study was to study the role of ECV and PBMT in maturation and improvement of infertility in women with PCOS. Methods: In this research, a number of oocytes were obtained after ovarian stimulation from women who had been referred to the hospital for infertility treatment after obtaining personal consent, and they were divided into three groups: control, ECV and PBMT. Subsequently, in vitro maturation (IVM) was assessed, then some oocytes were cultured with a routine medium and others were treated with ECV and PBMT. Real-time PCR was used to evaluate BCL-2, BAX, caspase-3, and autophagy gene (ATG5, LC3, Beclin 1). Oocyte glutathione (GSH), oxidised gluathione (GSSG), and reactive oxygen species (ROS) were measured. Results: The metaphase II (MII) oocyte ratio formation significantly increased in the ECV and PBMT groups (P<0.05). The expression of the BCL-2 gene was significantly up-regulated in the ECV and PBMT groups, but the expression of BAX and caspase-3 significantly decreased (P<0.05). The expression of the ATG5, LC3, BECLIN-2 genes significantly decreased in the ECV and PBMT groups (P<0.05). ROS, GSSG decreased in ECV and PBMT groups but GSH increased (P<0.05). Conclusion: The use of ECV and PBMT can increase the rate of fertilization and maturation of an oocyte and cause a decrease in apoptosis, autophagy, and ROS in a PCOS oocyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.